La Téléchirurgie : conférence du 26 mai 2005

"La téléchirurgie" : Etre opéré par un robot à distance.
Conférence du jeudi 26 mai à Paris.

"Une telle invention, baptisée Opération Lindbergh, a déjà eu lieu récemment lors de l'ablation d'une vésicule biliaire chez une patiente à Strasbourg alors que le chirurgien se trouvait à New York. Ce n'est, en fait, que la prolongation logique de la téléassistance opératoire qu'offrent les moyens de télécommunication actuels. Comment le praticien manipule-t-il le 'robot', comment le 'toucher' des instruments lui est-il restitué et comment les problèmes de retard inhérents à la transmission sont-ils compensés ? Plus de précision pour le chirurgien? Oui, par les différentes échelles de démultiplication du geste chirurgical, par une navigation en stéréo-vision magnifiée et en 3D, par le débrayage des bras du robot et par l'élimination des fins tremblements parasites par l'ordinateur qui s'interpose entre les mains du praticien et les instruments articulés. L'opérateur, confortablement assis à la console dans une position ergonomique, à distance de son patient, totalement immergé dans le champ opératoire, manipule des joysticks...ceci lui permet d'effectuer une chirurgie complexe tout en restant mini-invasif, en évitant des larges incisions traumatiques pour le malade."

Conférence animée par Henri-Pierre Penel, de La Recherche, avec :

  • Docteur Nicolas Bonnet, chirurgien, service de Chirurgie Thoracique et Cardiovasculaire, Hôpital de la Pitié-Salpêtrière
  • Docteur Adrian Lobontiu, chirurgien, service de Développement Clinique Chirurgie Robotique et Téléchirurgie, Intuitive Surgical Europe.

Musée des arts et métiers
60, rue Réaumur – 75003 Paris

La conférence a été retransmise en direct dans les autres centres du Cnam, mais il y a eu un problème de transmission des vidéos présentées par les intervenants. L'enregistrement de la conférence devrait être disponible d'ici 2 à 3 semaines sur le site du Musée des arts et métiers .

=> Télécharger le compte rendu de la conférence du 26 mai 2005 : cliquer ici.

=> Conférence du 21 mars 2002 :
"L'ingénieur au service du médecin", dans le cadre de l'Exposition au Musée des Arts et Métiers : "Evolutions, révolutions médicales. Destins d'internes".
Télécharger le compte rendu.

=> Télécharger la thèse : Compensation des mouvements physiologiques en chirurgie robotisée par commande prédictive

Résumé de la thèse :

"Il existe aujourd'hui de nombreux systèmes robotiques commerciaux pour l'assistance au geste chirurgical. Les interventions d'orthopédie, de neurologie, de chirurgie laparoscopique ou cardiaque peuvent désormais être assistées par des systèmes mécaniques et informatiques. Depuis les premiers robots d'aide au geste chirurgical dérivés des robots industriels, aux robots actuels, l'objectif est de développer des systèmes d'aide aux gestes médicaux et chirurgicaux qui apportent des bénéfices importants au chirurgien et au patient. Dans ce contexte, ce travail de thèse s'intéresse plus particulièrement à l'aide au geste chirurgical en chirurgie mini-invasive robotisée. La problématique abordée est de permettre à un robot chirurgical de compenser mécaniquement les mouvements physiologiques de l'organe ou du tissu opéré, afin de proposer au chirurgien une zone de travail virtuellement immobile. En effet, ces mouvements sont des perturbations pour le chirurgien qui télé-manipule un robot, car il doit les compenser lui-même à chaque fois qu'une tâche précise est requise à la surface d'un organe ou d'un tissu, en les accompagnant manuellement quand c'est possible. Ceci limite aujourd'hui le développement, entre autres, des opérations à coeur battant. L'objectif est de proposer un système de commande qui permette au robot de se déplacer de façon synchronisée avec l'organe et d'accompagner ainsi son mouvement. Ce travail se restreint aux mouvements physiologiques dus à la respiration et aux battements du coeur. Ceux-ci sont périodiques avec une période qui ne varie pas pendant l'intervention. Le principe utilisé pour commander le déplacement du robot est celui de l'asservissement visuel direct rapide, où les images d'une caméra d'observation endoscopique sont traitées en temps réel, avec une cadence d'asservissement jusqu'à 500 images par seconde. Le robot est commandé à l'aide de lois de commande prédictives dans lesquelles des modèles internes simples du robot et des mouvements à filtrer sont inclus. Les développements présentés dans cette thèse sont illustrés par deux ensembles de résultats, pour la compensation des mouvements respiratoires du foie d'une part, et le suivi du coeur battant d'autre part. Des dispositifs expérimentaux ont été mis en place autour d'un robot médical Aesop (Computer Motion, USA) et un prototype de robot chirurgical de la société Sinters de Toulouse. Des expériences de laboratoire et des tests in vivo en conditions chirurgicales réelles ont été réalisés."

Lire la suite...

Chirurgie robotique : quelles spécialités ?

La chirurgie assistée par ordinateur, pour les opérations en endoscopie sur organes mous, se développe actuellement dans un contexte multidisciplinaire.
Quel est plus précisément ce contexte ?

On va voir que le système n'offre pas les mêmes avantages pour toutes les spécialités.

Précisons tout d'abord qu'il s'agit d'utiliser le système de chirurgie assistée par ordinateur da Vinci™ en chirurgie cardiaque, digestive (générale), pédiatrique, urologique et vasculaire.

Des essais sont actuellement en cours aux USA pour une utilisation du système en ORL.

A l'heure actuelle, le système a quatre bras opérationnels à 100% : 3 bras pour tenir les instruments de chirurgie endoscopique et un bras pour la caméra.



Pour quelles spécialités est-il le plus utilisé ? Actuellement, c'est sans doute pour les opérations de prostatectomie radicale (en chirurgie urologique) qu'il apporte le plus de bénéfice, à la fois pour le chirurgien et pour le patient.
Les opérations en chirurgie cardiaque - essentiellement le pontage simple et le pontage double à coeur battant - requièrent une grande habileté de la part du chirurgien, et une courbe d'apprentissage assez longue : le coeur battant de manière irrégulière, il est très difficile pour le système informatisé du da Vinci™ d'en offrir une image stable. En d'autres termes : la stabilisation de l'image informatique du coeur à opérer est un véritable challenge !

Les utilisateurs du système en chirurgie cardiaque tendent à juger cette stabilisation de l'image comme perfectible.

Le stabilisateur, sorte de pince utilisée pour les opérations en mini-invasif à coeur battant, et dont le rôle est de maintenir le coeur battant sur lequel le chirurgien opère, a pour but de compenser ce défaut de manque de stabilisation de l'image informatisée. A l'heure actuelle, ce stabilisateur, l'Octopus® TE fourni par la société Medtronic®, est parfaitement opérationnel.

Présentation de l'Octopus® TE par la société Medtronic® : cliquer ici.

NDT : TE = Totally Endoscopic = totalement endoscopique. Cette mention indique que l'instrument est utilisé uniquement en mini-invasif, donc pour les procédures en chirurgie à coeur battant, et non dans le cadre de thoracotomies (chirurgie traditionnelle, dite : "à ciel ouvert"): pour opérer en chirurgie cardiaque à coeur arrêté (avec le CEC, système de circulation extra corporelle).

La situation actuelle reflète un niveau de recherches abouties pour le système da Vinci™ en chirurgie urologique. La chirurgie digestive assistée par ordinateur continue à se développer et à offrir de réels avantages pour le chirurgien et pour le patient par rapport à la chirurgie mini-invasive traditionnelle (la coelioscopie), mais elle reste très onéreuse, d'où la nécessisté d'un usage pluridisciplinaire des systèmes de chirurgie assistée par ordinateur déjà installés dans les hôpitaux et cliniques de France.

Quant à la chirurgie cardiaque assistée par ordinateur et ses spectaculaires pontages à coeur battant (sans l'utilisation du système de Circulation Extra Corporelle qui gère durant les opérations à coeur arrêté le maintien des fonctions du bloc coeur-poumons), elle passionne l'opinion publique et les chirurgiens spécialisés en chirurgie cardiaque !! Mais elle demande encore à évoluer, et ne peut que bénéficier d'une utilisation pluridisciplinaire du système da Vinci™.

Cliquer ici pour en savoir plus sur l'utilisation du système da Vinci™ .

Cas (=opérations) effectués le plus fréquemment en chirurgie urologique :
• Prostatectomies radicales
• Pyéloplasties
• Cystectomies

Lire la suite...

Robotic surgery: how does it work ?

Source :
The Robot Will See You Now
In Sunnyvale, Intuitive Surgical is piecing together the robot surgeon of the future :

A News by By Gary Singh (2004):

"TUBES, intricate robotic parts and medical machinery fill the room as I sneak a glimpse from outside. The door is open, but I'm not allowed to go in. A funny odor somewhere between formaldehyde and soap floats out of the room. Off in the back of Intuitive Surgical's air-conditioned Sunnyvale offices, the room connects to another room, also off-limits to the public. Inside, doctors are training on the da Vinci robotic surgical system, although I can't see what they're up to.

Intuitive hopes to revolutionize the process of Minimally Invasive Surgery (MIS).
Their plan of attack: have a robot perform operations.



In conventional MIS, the surgeon manipulates a long skinny camera called a laparoscope and a few other chopsticklike instruments that are stuck through tiny incisions in the body. The instruments basically serve as pivot points; in order to move the scalpel down, the doctor has to move the instrument up and vice-versa. And since the surgeon watches the piped-in video on a monitor, the entire process is difficult and counterintuitive. Physicians must go through special training to perform this kind of operation.

Named after famed artist and scientist Leonardo da Vinci, who laid out plans for the first robot, Intuitive's robotic system works like this: The doctor sits at an ergonomically designed console, almost like a sit-down arcade game from the 1980s, and remotely operates three skinny cylindrical robotic arms that perform the surgery with minute scissors, clamps and other proprietary EndoWrist instruments.

The robotic arms pierce the patient's body through tiny dime-size incisions the doctors make by hand. As if playing castanets, the surgeon uses his wrists, thumbs and forefingers to control the instruments on the ends of the robotic arms. Wires connect the console to the robot, the base of which rises up from the floor and spreads out over the operating table like a giant metal spider.

The surgical arms themselves then spring from the base and can be manipulated into just about every possible position or angle. A foot pedal controls a camera that shoots back high-quality video, giving the doctor an enlarged 3-D view—almost like being inside the patient himself. The entire system allows the surgeon to grasp, graft and clamp with more precision and more detail than was previously possible.

As the surgeon twists the controls, the robot's instruments twist exactly the same way, giving the doctor a natural and precise hand-eye coordination. The video is also transmitted to a huge monitor, allowing the rest of the surgical team to see how the operation is proceeding.

Since the da Vinci System is not autonomous and independent, you can't call it a true "robot" per se. It doesn't really have a mind of its own. The doctor runs all the controls. It's not like C3PO is donning hospital whites and operating on a living human. It's a master/slave situation, with the surgeon as the master.

The $1.5 million system is starting to pop up in all sorts of places. It made a cameo appearance in the last James Bond flick, Die Another Day, and a modified version also shows up for eight seconds in The Stepford Wives. Just recently, the surgical robot appeared on The Today Show. And you have to admit that the term "RoboSurgeon" absolutely has a ring to it. Igor and Dr. Frankenstein would be proud.

That's the Future

With the da Vinci system, doctors can perform coronary-bypass surgery without having to crack open the chest and use a heart-lung machine to circulate the blood and oxygen—one of the main problems of cardiac surgery.

Due to the reduced invasion of the body, patients tend to recover much more quickly. As a result, the cost can be reduced dramatically. Folks undergo heart surgery and can return to work a few weeks later. There's much less trauma after the fact—and no huge ugly scars. There's nowhere near as much blood loss or infection.

Fawaz Khanachet, a construction project manager for Alameda County, underwent a prostatectomy with the da Vinci System and was out of the hospital in fewer than 48 hours. He went back to work two weeks after the surgery.

"The recovery was relatively quick", he recalls. "There was very little discomfort when I got home".

Any surgery is both patient- and procedure-specific. There are no absolute guarantees. According to the summer 2003 issue of Intuitive's aptly titled newsletter, Robotic Surgeons Quarterly, 193 patients underwent a minimally invasive robotic procedure between October 2000 and November 2002 at one particular hospital in Italy. Three of them didn't make it.

But that's not necessarily a bad statistic. A number of issues contribute to overall mortality rates in various kinds of surgery—patient history, patient-to-nurse ratios and the type of surgery being performed, to name but a few—and various studies have shown mortality rates range from 1 percent to about 6 percent in general.

Remember that one story about a doctor accidentally leaving his wristwatch inside a patients' body? Well, that isn't supposed to happen with the da Vinci system. Gaping incisions are no longer necessary. And surprisingly, patients don't seem to mind going beneath the robotic tools.

"I thought when I first started using this robot on people that there would be a lot of hesitancy about it," says Dr. Barry Gardiner of the San Ramon Regional Medical Center. "Contrary to what I expected, it's been very, very seldom that we've had a patient express a concern about being operated on with this device. The patients look at it, and they hear the surgeons explaining to them that it enhances their surgical capabilities, it enhances dexterity and flexibility and control and vision, rather than negatively impacting it. It positively impacts it. So most patients have no problem being operated on. In general, the patients have received it very, very well, and that has not been an issue."

Khanachet felt the system was very advanced and even futuristic. "I thought, 10, 20, years from now, everything will be done with the aid of robots and robotic instruments," he says. "I did not have very much reservations about it. I thought, 'That's the future, and it's now.'"

Failing Safely

Just the idea of a robot operating on a human might give some surgeons a case of either the jitters or ruffled professional feathers. Many doctors are proud of their skills and feel they just don't need a contraption to perform an operation they can already perform themselves. Plus, at $1.5 million, one has to wonder if the machine is cost effective or not.

Pediatric surgeon Thomas M. Krummel of Stanford Hospital negotiated the purchase of a da Vinci System and, along with his partner, Craig Albanese, was the first one there to use it.

He wouldn't comment for sure whether or not it was worth the price. "I think it depends on how you define 'worth the price,'" he ventures. "There are some institutions who want to be on the leading or, you might even say the bleeding edge, and I think it makes sense for those institutions to use, study and evaluate new technologies. Or those that run a very small practice that doesn't have a lot of cases that need a robot, [then it] probably doesn't make sense. I think it's all about selection."

Skepticism is justified, primarily for safety concerns. One has to wonder what would happen should the machine break down during an operation. Is there a backup? What would the patient's chances for recovery be?

"The system is very robust at failure," explains Dave Rose, Intuitive Surgical's senior director of Robotic Systems Marketing. "If it fails, it fails safely."

I'll have to take his word for it, as several safety precautions are indeed built into the system. To cite just one example, the system features motion-scaling technology to filter out any shakiness of the surgeon's hands. This is accomplished by requiring the physician to move his hand around 10 times farther than he normally would to perform a stitch or a suture. His movement is scaled down, so the tip of the instrument moves proportionately 1/10 as much as the doctor's hands do.

"If you're trying to do a very precise movement, in which you're moving only 1 millimeter, holding that kind of precision with your hand is quite complicated," says Pablo Garcia, a senior research scientist at SRI International, who works with technology on which the da Vinci System is based.

"It requires a lot of dexterity," he explains. "If you scale the movement, you can do a 10-millimeter movement with your hand and end up with only a small displacement on the robot side. It's like changing the scaling in the mouse on your computer. You can do a finer control, where a small movement on the pad results in a big movement on the screen, or the opposite, like in this case, where a big movement on the pad results in a small movement on the cursor. That's the idea."

Garcia says that we all have a natural tremor in our hands, and it can be viewed under a microscope. Since it's a precise frequency, the robot can filter it out. "When you filter it through the robot, you don't notice any vibration at all," he explains.

So if the doc had a little too much coffee that morning, the robot will compensate for it.

Paul Lilagan, a product manager and clinical engineer at Intuitive, adds that a full redundant safety system is a major component: "In each joint, there are sensors that record the position of those joints. And the system checks that positioning over 1,300 times a second just to make sure that the position between the two redundant sensors is correct. It monitors all the motors that drive all the different parts, the wrists, and everything else ... to make sure they're functioning properly. And all the electronic boards that drive the entire system are also constantly being monitored. Along with the system network, there's a second safety network that's monitoring whether everything's working right."

So no worries, he appears to be saying. The robotic arm won't snap off inside your body.

"The FDA approval process is enormously focused on mechanical safety and security associated with using the device," Krummel continues. "We've never had any mechanical problem whatsoever."

Gardiner also says that he has performed almost a thousand operations with the system and witnessed only two mechanical failures. "One time, the system went down just as we were finishing the operation, so it wasn't an issue," he explains. "The other time it just wouldn't boot up, so we never even got started with the operation. So there's never been an issue that affected or impacted patient care in any way, as far as I'm aware of."

If there exists any sort of mechanical problem, the machine won't even boot up. The safety network will prevent it from going forward with the startup process. If something does go wrong, repair technicians are only a phone call away, and tech-support junkies likewise staff the phones round the clock.

Off to the Races

Local MDs Fred Moll and John Freund, along with electrical engineer and Hewlett-Packard manager Robert Younge, founded Intuitive Surgical in December 1995 in Sunnyvale. The da Vinci system can be traced back to Phillip Green's original work at SRI in the late 1980s. Green originally received a grant from the National Institute of Health to design prototypes for future models of computer-assisted laparoscopic surgery.

Moll originally checked out one of the prototypes at SRI in 1995 and then hooked up with Younge and Freund to start the company. Intuitive Surgical licensed the basic patents from SRI, added some of its own proprietary technologies and collaborated with IBM, MIT and other groups. As a result, they led the way to the first commercial form of robotic-assisted surgery.

"Like a lot of these things, you need a champion behind it," Garcia tells me. "Fred Moll was the surgeon who got interested in the technology. [He] thought it had a lot of potential and got investors interested as well."

The first systems were used in Europe; after FDA approval, the machines were allowed in America. In August 1999, the first system in the United States was installed at Ohio State University. The IPO hit home in June of 2000 with 5 million shares, and Intuitive was off to the races. There are now more than 200 Vinci Systems around the globe in various academic and community hospital settings, including Stanford Hospital, Alta Bates Hospital in Oakland and Washington Towneship Hospital in Fremont.

In March of 2003, Intuitive Surgical ranked 31st in the Silicon Valley/San Jose Business Journal's 50 fastest-growing public companies. For the first quarter of 2004, its profits increased 41 percent from a year ago, and the company now has more than 300 employees.

Intuitive also recently bought out its major competitor, ComputerMotion, the manufacturer of the Zeus robotic surgery machine. Zeus' hardware was fundamentally similar, but unlike the da Vinci system, the surgeon sat opposite a vertical screen, as opposed to da Vinci's immersive monitors embedded in the eyepieces of the visor port. The da Vinci System also has an extra degree of freedom in the hand controllers.

The system is not without drawbacks, however. Its $1.5 million price tag puts it completely out of the reach of most hospitals. "It's got a long way to go," Moll explained at the American College of Surgeons' annual meeting in October of 2001. "It's too big. It's too expensive. It doesn't have all the tools surgeons need."

Garcia agrees. "It's still just the Formula One version," he says. "They need to get to the passenger Toyota car that everybody can use."

Krummel concurs that the machine is too overwhelming. "If you're operating on 6-pound babies, it's a pretty big device," he said.

I, Robot Doc

Over in the lobby of Intuitive's glossy headquarters, a promo video at the front desk shows the da Vinci System performing surgery, definitely not footage for weak stomachs. Press clippings from around the globe grace the walls as you waltz down the hallway from the lobby to the demonstration room. You feel like you're at the worldwide center of medical innovation, in some strange mad-scientist sort of way.

And speaking of mad scientists, sitting down at the da Vinci System's console has a pure godlike vibe. It's like being in sole charge of a seven-figure pair of pliers.

You also just can't ignore the B-movie aura about the whole thing. At the console, you feel like Vincent Price playing organ in The Abominable Dr. Phibes. The automated domestic assistants in I, Robot come to mind immediately. And you can easily picture a scene where the robot suddenly comes alive and starts operating on you instead.

All horror aside, surgeons from all over the country come to Intuitive's headquarters to train on the machine. Sometimes they even practice on cadavers with fake blood—the medical equivalent of flight simulation.

Ever wanted to pretend like you're in the operating room suturing or sewing stitches? This is the place. Looking into the console's eyepiece at a close-up view of the EndoWrist instruments, it really feels like you're able to shrink your hands and put them in places they'd never ordinarily fit.

Which is word for word how Gardiner described the process in a Time magazine article on June 4, 2001. Gardiner was one the key players in the original design of the da Vinci System, and he collaborated with the original founders and engineers. He even relocated his practice to San Ramon just to start its robotic surgery program, and his machine was the first one west of the Mississippi.

"It's a device that we initially designed to provide the surgeons with the technical capabilities that they had with open surgeries that they lost when the laparoscope came into being," he says. "The laparoscope, although it had an advantage of limiting the size of the incisions, it also limited the surgeon's visibility because they had a two-dimensional image. It limited flexibility and dexterity because you're operating with a long-shafted instrument that is rigid and had no articulation in it. So what we tried to do was return those aspects of surgery back into the laparoscopic arena that you couldn't do with conventional laparoscopy. And the way that was done was by basically introducing a computer between the end of the instrument and the surgeon's hands."

Long-Distance Checkups

Looking to the future, Lilagan explains that Intuitive is always seeking to add additional clinical capabilities to the system: "Recently, we've added a fourth arm to the system, which actually now provides the surgeon sitting at the console to have control of an extra hand, which would normally be—either in a laparoscopic case or an open case—the assistant's hand. We're trying to give more control to the console surgeon to be able do his surgery. ...We're really just across the board trying to figure out where we can add value to the surgery."

SRI also conducted research for the Defense Department on how to use robots to remotely operate on soldiers in the battlefield, and Garcia says remote surgery has already been performed in Canada. So one can also imagine someday seeing a doctor in San Francisco assisting on surgery in Tokyo. Or when astronauts finally make it to Mars, a surgeon might need to remotely operate on them should they get injured.

But this is all still years away, as the speed of communication channels just isn't there yet. The lag time between the surgeon's movements and the actual remote robot's maneuvering on Mars is still significant over long-distance connections, so we probably won't see such scenarios until decades down the road.

Lilagan says Intuitive is aware of these directions, but they are not necessarily a focus. There are many obstacles to overcome that aren't under Intuitive's control, and he says the company is taking a much smaller-step approach to advancing the technology. "[For telesurgery] we would need to have a fiber-optic lead and we need to know which surgeon would be held responsible for the surgery, and there's legal matters. ...That really is farther down the line, and the rate [at which we get there] is going to be dependent on other technology."

Garcia says the technology for remote surgery is definitely here, but SRI's adds that research is geared more toward widening the robot's availability.

"It's more a matter of whether the market really needs remote applications or not," he explains. "I would say a lot of the research is going towards making smaller tools, making them capable, more dexterous, making the whole robot smaller, cheaper, easier to set up, friendlier, so that it doesn't require as much overhead to operate. ...That's where a lot of the focus is, on finding surgeries where [the robot] really has a benefit. For example, an area we're looking more into is pediatric, neonatal, fetal surgery, areas of surgery that traditionally have been very difficult for surgeons to perform, where there are still a very limited number of procedures, but still have a lot of potential."

Krummel agrees that the robot will eventually become smaller: "One-quarter the size and a fraction of the cost would make it broadly applicable. We have an active robotics research program that is trying to sort out how such things might be built into or used to scale down the device."

In the end, because of or despite the B-movie mad-scientist aspect of it all, even children get a kick out of test-driving the da Vinci System.

'When we have people come in with their kids, and the kids sit down with the machine, they're not thinking about all the stuff behind it," Lilagan said. "It's just play. And some of the surgeons look at it that way too. It's fun. Overall the main goal is just to do better surgery.'"



More information about Intuitive Surgical: please click here.

Lire la suite...

Chirurgie de l'obésité : la gastroplastie - Bariatric Surgery

La gastroplastie est le nom donné à l'intervention chirurgicale visant à traiter l'obésité.

NB: Cette opération peut se faire par la chirurgie robotique. Il s'agit de poser un anneau gastrique.

Une fois cet anneau posé, le patient devra veiller à ne jamais engloutir d'importantes quantités de nourriture : les conséquences seraient très graves et mettraient sa vie en jeu ! Les obèses boulimiques qui décident de subir cette opération chirurgicale prennent ainsi une décision radicale : après l'opération, le traitement contre la boulimie (suivi psychologique, etc.) passera ou cassera ! Et si ça casse, tant pis pour le patient...En Europe, certains chirurgiens refusent de pratiquer ce genre d'intervention.



Aux USA, certains hôpitaux américains ont pu être sauvés de la faillite grâce à cette mine d'or que représente le traitement chirurgical de l'obésité par l'anneau gastrique. Les bénéfices (spectaculaires !) dégagés par cette activité ont permis à ces hôpitaux d'alimenter des budgets carrément anémiés, comme ceux des urgences,
en procédant à une redistribution salvatrice. Un mal pour un bien ?

Understanding Bariatric Surgery:
Gastric Bypass Roux-en-Y:

"According to the American Society for Bariatric Surgery (ASBS) and the National Institutes of Health (NIH), Roux-en-Y gastric bypass is the current gold standard procedure for weight loss surgery. It is also one of the most frequently performed weight loss procedures in the United States.

Gastric Bypass Roux-en-Y reduces the capacity of the stomach by creating a smaller stomach pouch. The small space holds only one ounce of fluid. The procedure also constructs a tiny stomach outlet, which slows the speed food leaves your stomach. So you will feel full after eating a small amount and you will stay satisfied for a long time.

Here's how it works:
Staples are used to create a small (15 to 20cc) stomach pouch.

The rest of the stomach is not removed, but is stapled completely shut and divided from the stomach pouch.

The newly formed pouch empties directly into the lower portion of the intestine--bypassing calorie absorption.

The small intestine is divided just beyond the duodenum, brought up, and connected to the newly formed stomach pouch.

The other end is connected into the side of the pouch limb of the intestine (creating the "Y" shape that gives the technique its name).

Advantages of the Gastric Bypass Roux-en-Y Procedure:
Average excess weight loss is usually higher than with purely restrictive procedures.

One year after surgery, weight loss can average 77% of excess body weight. After 10 to 14 years, some patients have maintained 50-60% of excess body weight loss.

96% of certain associated health conditions (back pain, sleep apnea, high blood pressure, diabetes and depression) were improved or resolved according to a 2000 study of 500 patients.

Risks Specific to the Gastric Bypass Roux-en-Y Procedure:
"Dumping syndrome" When stomach contents are literally "dumped" rapidly into the small intestine. Sometimes triggered by too much sugar or large amounts of food. Dumping syndrome doesn't pose a health risk, but its symptoms aren't fun: nausea, weakness, sweating, faintness, and diarrhea. Some patients can prevent dumping syndrome by avoiding sweets after surgery.

Up to 20% of patients need follow-up operations to correct problems like hernias.

Up to 30% of patients develop gallstones after losing weight. You can reduce the risk of gallstones by taking bile salts for 6 months following surgery.

Leakage of the connection between the pouch and the intestine. This is very rare, but potentially dangerous.

Diminished effectiveness. The success of the procedure can be reduced if the stomach pouch is stretched and/or left larger than 15-30cc (1/2 to one ounce).

Poor views of internal organs. The bypassed portion of the stomach, duodenum, and segments of the small intestine are difficult to see using X-ray or endoscopy. This only becomes a problem if the patient develops ulcers, bleeding, or malignancy. Gastric bypass does not cause cancer.
Nutrient deficiencies: Almost a third of patients develop nutritional deficiencies because the duodenum is bypassed in this procedure. So the body doesn't absorb iron, calcium and other nutrients efficiently after surgery. Fortunately, these deficiencies can usually be controlled with proper diet and vitamin supplements.

Iron deficiency anemia. Because the duodenum is bypassed in this procedure, the body doesn't absorb iron and calcium very well after surgery, which can lead to iron deficiency anemia. This is a particular concern for patients who experience chronic blood loss during menstruation or from bleeding hemorrhoids.

Osteoporosis. Because the body doesn't absorb calcium properly after surgery, there is a greater risk of developing osteoporosis.

Metabolic bone disease. Also caused by bypassing the duodenum, some patients experience bone pain, loss of height, humped back and fractures of the ribs and hip bones.

Chronic anemia. A type of anemia caused by a deficiency of vitamin B12. Can usually be managed with pills or injections."
Read more about it !...

Lire la suite...

Chirurgie robotique : "le geste qui a traversé l'Atlantique", ou : "Opération Lindbergh"

L’opération à longue distance a été mise en application à la fin des années 90, lorsqu’un chirurgien a opéré de New York une patiente qui se trouvait au CHU de Strasbourg. Le cas pratiqué était une vésicule biliaire. Cette opération, baptisée «Opération Lindbergh», a constitué une première mondiale en télé chirurgie. Le communiqué de presse explique l’intérêt technologique du «geste qui a traversé l’Atlantique».

==> Le chirurgien à New York, la patiente à Strasbourg
(Septembre 2001)
"C’est une première mondiale et hautement symbolique à l’heure où les attentats de New York et Washington ont renforcé les liens franco-américains. Le 7 septembre, un chirurgien a opéré depuis New York une patiente de 68 ans qui se trouvait à Strasbourg.

Prouesse technologique

'Cette prouesse technologique a été rendue possible grâce à la robotique et surtout grâce à une transmission à haut débit, rapide et de qualité constante, qui a permis d'opérer en toute sécurité', a indiqué le professeur Jacques Marescaux, qui a opéré depuis New York, avec son équipe de l'Ircad (Institut de recherche contre les cancers de l'appareil digestif).

A New York, le chirurgien manipulait les bras d'un robot, nommé Zeus et conçu par Computer Motion, spécialiste de la robotique chirurgicale de pointe, pour opérer en direct la patiente hospitalisée au Centre hospitalier universitaire (CHU) de Strasbourg. 'C'est la maîtrise de la qualité et des délais de transmission liés à la distance qui a permis cette véritable première dans l'histoire de la chirurgie', selon le chirurgien. 'Cette performance, on la doit aux ingénieurs de France Telecom qui ont atteint un tel niveau de technicité en matière de rapidité de transmission et de compression des données qu'ils ont franchi des limites jusque là inégalées', dit-il. 'On a opéré avec des délais de 130 millisecondes quasiment imperceptibles à l'œil', précise-t-il.

Une pratique d’avenir

Ce délai entre le geste du chirurgien et le retour d'image sur son écran englobe l'aller-retour New York-Strasbourg, soit quelque 15.000 km, ainsi que les temps de codage et décodage de la vidéo et de transmission du signal. Pour l’occasion, France Telecom a mis en place un système haut débit (10 mégabits/seconde) par fibre optique et relié les équipements nécessaires (caméra, robot, visio-conférence, téléphone). L'opération, qui a duré 54 minutes, a consisté à enlever la vésicule biliaire de la patiente sans ouvrir l'abdomen. Il s'agit d'une procédure de chirurgie mini-invasive (acte chirurgical guidé par l'introduction d'une caméra sans ouvrir l'abdomen ou le thorax). Cette téléchirurgie à grande distance a été baptisée 'opération Lindbergh', en mémoire de l'exploit de l'aviateur Charles Lindbergh, qui a traversé l'Atlantique en 1927, en solitaire.

'On peut envisager à l'avenir un partage du geste chirurgical où tout chirurgien expert pourra participer et aider à une opération qui se déroulera n'importe où sur le globe', s'enthousiasme le Pr Marescaux. 'Dans quelques années, le robot, dont le prix est encore d'un million de dollars (plus de 7 millions de F, NDLR), fera partie d'un bloc opératoire comme n'importe quel appareil', prédit ce spécialiste".

Source :
TF1-LCI Sciences
http://news.tf1.fr/news/sciences/2001/

Lire la suite...

Chirurgie robotique et imagerie médicale

L’article de l’Expansion du 18 décembre 2002 montre que les progrès de la chirurgie robotique passent par l’imagerie médicale :

"L'Institut de recherche contre le cancer de l'appareil digestif (Ircad), l'institut strasbourgeois du Pr Marescaux, travaille à la mise au point d'un logiciel modélisant le patient en trois dimensions à partir des données d'un scanner ou de l'imagerie par résonance magnétique (IRM). Ce clone numérique servira au chirurgien pour répéter les gestes à effectuer, jusqu'à atteindre la perfection opératoire. Il enregistrera une « partition » qui sera ensuite exécutée par le robot. L'équipe médicale suivra le déroulement du « film » grâce à un système de « réalité augmentée », superposant les images de la simulation et celles de la caméra, pour voir jusqu'aux vaisseaux irriguant les organes. Selon le Pr Marescaux, le rôle du chirurgien ne sera pas moins dénaturé que celui du pilote d'avion qui s'entraîne sur un simulateur et utilise un système d'atterrissage automatisé."

Lire la suite...

Highlighting the da Vinci™ surgical system

Which procedures are being performed with the system? What are the advantages for Patient and Surgeon? What are the prospects of the da Vinci™ surgical system?
Here is the answer to these questions, summarized in just a few pages:
(Word Doc.).

==> Source:
IntuitiveSurgical.com

Lire la suite...

Le système chirurgical da Vinci™

Voici quelques images du système de chirurgie assistée par ordinateur
da Vinci™ et quelques précisions pour en apprendre un peu plus...

==> Télécharger la présentation (PowerPoint).

NB: Cette présentation date de 2002.

==> Pour visualiser les instruments utilisés actuellement, cliquer ici.

==> Pour une description en anglais du système de chirurgie assistée par ordinateur da Vinci™ , cliquer ici.

Sources :
Intuitive Surgical
.

Lire la suite...

Where to find a hospital with a da Vinci™ surgical system in the USA? Présence internationale du système chirurgical da Vinci™

Combien d'hôpitaux français et étrangers possèdent un système de chirurgie assistée par ordinateur da Vinci™ ?

Pour une vue globale de la situation en 2002, cliquer ici.

To get an overview of the situation in 2002, click here.

NB: depuis 2002, d'autres systèmes ont été acquis par des hôpitaux et cliniques du monde entier. Certains hopitaux ou cliniques possèdent plusieurs systèmes.
Please note that since 2002, other da Vinci™ surgical systems have been installed in clinics and hospitals worldwide.

NOM ET ADRESSE DES HOPITAUX ET CLINIQUES DANS LA MONDE EQUIPES D'UN SYSTEME DE CHIRURGIE ASSISTEE PAR ORDINATEUR da Vinci™ :
=> cliquer ici

NAME AND ADDRESS OF HOSPITALS AND CLINICS EQUIPPED WITH A da Vinci™ SURGICAL SYSTEM (WORLDWIDE):
==> click here

=> daVinciProstatectomy.com

=> Le système da Vinci™ à la Clinique Saint-Augustin à Bordeaux.

==> DaVinciProstatectomy.com

Source:
Intuitive Surgical Inc.

Lire la suite...

The da Vinci™ surgical system helps you "Die Another Day"!...

Hi-Tech Robot Gives Surgeons a Hand, but...wait a minute. You may have already seen this system in action. In the James Bond film "Die Another Day," which hit movie screens in 2002, the da Vinci™ Surgical System landed an unlikely supporting role. In one of the earliest scenes, at St. Mary's Hospital in London, the machine scans Bond's body...(read more).




"Imperial College's involvement came about in January when Professor Ara Darzi, professor of surgery at the faculty of medicine's academic surgical unit at the St Mary's campus, collaborated with Eon Productions over featuring the Da Vinci machine, the first minimal access system to eliminate tremor in a surgeon's hand, in a early scene.

The robot's three arms can be seen early in the film scanning Bond's body and taking a blood sample. Production designer Peter Lamont and art director Mark Harris spent time at St Mary's Hospital, London, learning about the machine's ingenuity as they practised sewing stitches, picking up balls and putting them in boxes - standard practice for those learning how to operate with the machine.

'I'd seen the Da Vinci™ on Tomorrow's World and in Time magazine. It's an amazing machine for non-invasive surgery and I thought we'd have to make a mock-up. I was delighted when we found it at St Mary's,' said Peter, who originally wanted to be a surgeon before he won a scholarship to art school and went on to work on 17 Bonds. In 1997, he won an Oscar for Titanic.

[...]Sarah Robinson, product placement coordinator, said of Da Vinci's role in medicine: 'Both the producers and director thought this machine was fantastic; it's a very important part of the film'.

'It's very difficult to keep up with technology - we have to be one step ahead and try and come up with great new products which is where the Da Vinci came in. It was also incredible to see St Mary's hospital - we had a great day. We were definitely in awe of the work carried out there - our world is fantasy whereas St Mary's is real - we don't save lives.'

Professor Darzi has been fascinated with Bond films since very young. 'Surgeons and spies are alike as both aspire to serve their subjects with minimal fuss while using the best technologies around. Bond films have always been an inspiration to those with a technology interest, ' he said.

'I never thought that one day, the department I headed would be making a contribution. It's great that Imperial College's knowhow has made it to the movie screen'."

Article by Tanya Reed

Sources:

=> University of Kentucky: "Remote-Control Surgery: Hi-Tech Robot Gives Surgeons a Hand", by Jeff Worley, updated June 6, 2005.

=> Newspaper of Imperial College London, Issue 123, November 13, 2002.

Lire la suite...